Tripeldecker-Komplexe, VIII¹⁾

Elektrophile Aufstockungsreaktionen von Borataferrocen- und Bis(borol)cobaltat-Ionen mit Tricarbonylmetall-Fragmenten der Chrom- und Mangan-Gruppe²⁾

Gerhard E. Herberich*, Dieter P. J. Köffer und Karl M. Peters

Institut für Anorganische Chemie der Technischen Hochschule Aachen, Professor-Pirlet-Straße 1, W-5100 Aachen

Eingegangen am 4. März 1991

Key Words: (Borole)metal complexes / Tripledecked complexes, electrophilic stacking reaction of, nucleophilic degradation of

Tripledecker Complexes, VIII. – Electrophilic Stacking Reactions of Borataferrocene and Bis(borole)cobaltate Ions with Tricarbonylmetal Fragments of Chromium and Manganese Group Metals

Bis(borole)cobaltate ions $[CoL_2]^-$ (1⁻) and borataferrocene ions $[CpFeL]^-$ (2⁻) (a: L = C₄H₄BMe; b: L = C₄H₄BPh) readily undergo stacking reactions. When treated with sources of chromium group M(CO)₃ fragments, 1b⁻ and 2b⁻ form 30-e tripledecked anions $[\mu$ -L(CoL){M(CO)₃}]⁻ (M = Cr, Mo, W) (3⁻ - 5⁻) and $[\mu$ -L(FeCp){M(CO)₃}]⁻ (M = Cr, Mo, W) (6⁻ - 8⁻). These 30-e anions are very sensitive to nucleophilic degradation by e.g. water, acetonitrile and to a lesser extent acetone. Cyclic voltammetry reveals a reversible oxidation of 6⁻ to give the 29-e neutral tripledecker complex μ -L(FeCp)[Cr(CO)₃] (6), while the oxidation of the higher hom-

In den letzten Jahren ist eine rasch wachsende Zahl von Tripeldecker-Komplexen beschrieben worden³⁻⁵⁾. Gleichwohl ist noch wenig bekannt, in welchem Rahmen die Komplexfragmente der Tripeldecker-Verbindungen – bei der Synthese oder nachträglich am fertigen Tripeldecker-Komplex – variiert werden können. Welche Faktoren stabilisieren oder destabilisieren Tripeldecker-Strukturen?

Wir haben versucht, systematisch Metallcarbonyl-Fragmente der frühen d-Metalle in Tripeldecker-Komplexe einzubauen⁶. Hier berichten wir über Aufstockungsreaktionen der Sandwich-Anionen 1^{-7} und 2^{-8} mit M(CO)₃-Fragmenten; erste Ergebnisse sind bereits veröffentlicht worden^{1,7,9}.

Ergebnisse Aufstockungen mit M(CO)₃-Fragmenten der Chrom-Gruppe

Die Sandwich-Anionen $1b^-$ und $2b^-$ lassen sich mit Cr(NH₃)₃(CO)₃ in siedendem Dioxan zu den Tripeldecker-Anionen 3^- und 6^- aufstocken und aus wäßriger Lösung

ologues is fully irreversible. Protonation of $6^- - 8^-$ affords hydrido complexes μ -L(FeCp)[MH(CO)₃] (M = Cr, Mo, W) (9-11), and, with PhCH₂Br, the benzyl derivate μ -L(FeCp)-[W(CO)₃(CH₂Ph)] (12) is produced. Similar stacking reactions with manganese group M(CO)₃ fragments produce neutral tripledecked complexes as e.g. μ -L(CoL)[Re(CO)₃] (14) (L = C₄H₄BPh). In the case of the reaction of [CpFeL]⁻ (2⁻) with [Mn(CO)₃(NCMe)₃]PF₆ symmetric tripledecker compounds μ -L[Mn(CO)₃]₂ (15 a,b) and μ -L(FeCp)₂ (16a,b) are formed in a novel dismutation reaction (a: L = C₄H₄BMe; b: L = C₄H₄BPh).

als kristalline Salze $[NMe_3Ph] \cdot 3^{7}$ bzw. $[NMe_3Ph] \cdot 6^{9}$ fällen. Die höheren Homologen werden im Prinzip in ähnlicher Weise erhalten, jedoch ist die Wahl der Reaktionsbedingungen hier sehr kritisch. Als Tricarbonylmetall-Quellen eignen sich Mo(CO)₃(NCMe)₃^{10,11}) und W(CO)₃-(NCMe)₃^{10,11}; die Reaktion gelingt beim Cobaltat 1b⁻ in Diethylether und beim Borataferrocen-Ion 2b⁻ in Tetrahydrofuran, jeweils bei Raumtemperatur.

Während die Tricarbonylchromat-Ionen 3^- und 6^- in wäßriger Lösung wenigstens für kurze Zeit beständig sind, erweisen sich ihre höheren Homologen als außerordentlich empfindlich gegen nucleophilen Abbau. Das Cobaltat-Ion wird in Diethylether mit Mo(CO)₃(NCMe)₃ in ca. 40 min bzw. mit W(CO)₃(NCMe)₃ in ca. 17 h aufgestockt; Zugabe der stöchiometrischen Menge (!) von [15]Krone-5¹² liefert dann kristalline Produkte $[Na([15]Krone-5)] \cdot 4$ bzw. $[Na([15]Krone-5)] \cdot 5$. Diese werden offenbar in Gleichgewichtsreaktionen gebildet, da sie durch Lösen in Acetonitril in wenigen Sekunden abgebaut werden. Versucht man die Synthese in THF, so beobachtet man IR-spektroskopisch zunächst (d.h. unter kinetischer Kontrolle) die Bildung der Tripeldecker-Ionen 4⁻ und 5⁻; diese Ionen werden dann durch das Solvens langsam und zu Ende quantitativ wieder abgebaut.

Bei den vom Borataferrocen-Ion $2b^-$ abgeleiteten Tripeldecker-Ionen 7^- und 8^- liegt das Gleichgewicht der Bildung deutlich günstiger. Die Synthese wird in THF durchgeführt. Filtrieren und Entfernen alles Flüchtigen im Vakuum liefert rohe Natrium-Salze Na $\cdot 7 \cdot x$ THF bzw. Na $\cdot 8 \cdot x$ THF, deren THF-Gehalt jeweils NMR-spektroskopisch festgestellt werden muß. Mit [15]Krone-5 werden analytisch definierte, kristalline Produkte [Na([15]Krone-5)] $\cdot 7 \cdot$ THF bzw. [Na([15]Krone-5)] $\cdot 8 \cdot \frac{1}{2}$ THF erhalten.

Bei allen hier beschriebenen Umsetzungen ist eine Reaktionsüberwachung mit Hilfe der v(CO)-Banden der Reaktanden unentbehrlich; Bandenzahl und Spektrentypus werden dabei selbstverständlich durch Ionenpaarbildung beeinflußt, wie von Carbonylaten allgemein bekannt¹³⁾.

Hydride und andere Derivate

Trotz der hier zutagetretenden, geringen Stabilität der 30e-Tripeldecker-Anionen $3^- - 8^-$ haben wir mit erheblichen Mühen nach Reaktionen gesucht, bei denen die Tripeldekkerstruktur intakt bleibt.

In der cyclischen Voltammetrie zeigt das CrFe-Anion 6^{-9} in THF einen reversiblen Redoxprozeß mit einem Mittelpotential von -0.226 V gegen GKE. Demnach kann das 30-e-Anion reversibel in den neutralen 29-e-Tripeldecker-Komplex 6 übergeführt werden. Die höheren Homologen 7⁻ und 8⁻ zeigen dagegen irreversible Oxidation mit anodischen Peakpotentialen von $E_p^a = -0.049$ (7⁻) und -0.087V (8⁻), an die sich eine irreversible Reduktion bei $E_p^k = -0.847$ (7⁻) bzw. -1.128 V (8⁻) anschließt. Die entsprechenden Cyclopentadienyl-Komplexe [CpM(CO)₃]⁻ zeigen – zumindest auf den ersten Blick – das gleiche Verhalten¹⁴⁾. Es ist uns jedoch in keinem Fall gelungen, die elektrochemisch erzeugten Produkte durch weitere Befunde zweifelsfrei zu identifizieren.

Die Anionen $6^- - 8^-$ können im Zweiphasensystem Pentan/30proz. Phosphorsäure zu Hydriden 9-11 protoniert werden; Essigsäure ist für diesen Zweck zu schwach, während CF₃CO₂H Zersetzung bewirkt.

Die Hydridochrom-Verbindung 9 ist nur bei $< -50^{\circ}C$ kurze Zeit haltbar und konnte nur spektroskopisch charakterisiert werden; von den homologen Mo- und W-Verbindungen 10 und 11 wurden dagegen auch Elementaranalysen und Massenspektren erhalten. Die chemischen Verschiebungen $\delta(^{1}H) = -5.30$ (9), -5.46 (10) und -6.51 (11) unterscheiden sich nur wenig von denen der entsprechenden Cyclopentadienyl-Verbindungen CpMH(CO)₃ mit $\delta(^{1}H) =$ $-5.46 (M = Cr), -5.52 (M = Mo) und -7.33 (M = W)^{15}$. Die Stereochemie der MH(CO)₃-Gruppe wird vom Typ einer quadratischen Pyramide sein, wie für CpWH(CO)₃ NMR-spektroskopisch bewiesen¹⁶⁾. Bei der Molybdän-Verbindung 10 beobachtet man auch bei -85° C ein scharfes Dublett für die Carbonyl-Gruppen; die MoH(CO)₃-Gruppe ist also bei dieser Temperatur noch fluktuierend. Daß dieses Signal durch Kopplung mit dem hydridischen H-Atom zu einem Dublett aufgespalten ist, beweist nochmals das Vorliegen einer Mo-H-Bindung. Im Fall der Wolfram-Verbindung 11 findet man bei Raumtemperatur im ¹³C-NMR-Spektrum ein verbreitertes Signal für die Carbonyl-Gruppen; die Kopplung mit dem hydridischen H-Atom war nicht aufgelöst. Im Tieftemperaturgrenzfall des ¹³C{¹H}-NMR-Spektrums findet man für die Carbonyl-Gruppen zwei Signale im Verhältnis 2:1 (2 CO_{cis} , 1 CO_{trans}), die bei 223 \pm 5 K koaleszieren; die Aktivierungsbarriere beträgt ΔG^{+} 49 \pm 5 kJ mol⁻¹.

Das Tripeldeckeranion 8⁻ läßt sich auch mit Benzylbromid zum Benzyl-Derivat 12 alkylieren. Dieser Komplex 12 gehört zum gleichen Strukturtyp wie 11. Er verrät die Bindung der Benzyl-Gruppe an das Wolfram-Zentrum durch Wolfram-Satelliten des Protonensignals der benzylischen CH_2 -Gruppe (²J_{WH} = 5.7 Hz).

Aufstockungen mit M(CO)₃-Fragmenten der Mangan-Gruppe

Bei der Aufstockung der Anionen 1⁻ und 2⁻ mit $[M(CO)_3]^+$ -Fragmenten mit M = Mn, Re sind Neutralprodukte zu erwarten. So erhielten wir in der Cobalt-Reihe mit $[Mn(CO)_3(NCMe)_3]PF_6^{17}$ die Tripeldecker-Komplexe 13a,b⁷). Nach dem gleichen Schema ergibt ReBr(CO)₃-(NCMe)₂¹⁸) mit 1b⁻ den Rhenium-Komplex 14.

Die Aufstockung der Anionen 2^- mit [Mn(CO)₃-(NCMe)₃]PF₆¹⁷⁾ nimmt dagegen einen ganz unerwarteten Verlauf: Man erhält nicht die unsymmetrischen MnFe-Tripeldecker-Komplexe, sondern nebeneinander die symmetrischen Komplexe 15 und 16, also die Produkte einer neuartigen Dismutation. Die entsprechenden Derivate μ - L(FeCp)₂ und μ -L[Mn(CO)₃]₂ mit L = 2-Ethyl-1-phenylborol sind lange bekannt und beide röntgenographisch charakterisiert¹⁹, ebenso **15b**²⁰. Bei der Reaktion von **2b**⁻ mit ReBr(CO)₃(NCMe)₂¹⁸⁾ in Diethylether wird dagegen wieder der erwartete, unsymmetrische ReFe-Tripeldecker-Komplex **17** gebildet¹.

Diskussion

In dieser Arbeit haben wir eine Reihe neuartiger Tripeldecker-Komplexe synthetisiert und charakterisiert (Tab. 1-3). Die Konstitutionsermittlung konnte sich dabei auf die röntgenographische Strukturbestimmung von [NMe₃-Ph] \cdot 6⁹⁾ und auf umfangreiches Datenmaterial über (Borol)metall-Komplexe²²⁾ stützen. Gleichzeitig haben wir in der außerordentlichen Empfindlichkeit mancher Tripeldekker-Komplexe gegen nucleophilen Abbau Grenzen der synthetischen Realisierbarkeit solcher Strukturen angetroffen, wie sie schon einmal bei der ersten Tripeldecker-Verbindung, dem Wernerschen Tripeldecker-Komplex [Ni₂Cp₃]^{+ 23)}, gefunden worden waren.

Wir weisen noch auf ungelöste Probleme hin. Beim nucleophilen Abbau werden in aller Regel die Metallcarbonyl-Fragmente abgespalten, hier wie bei den Komplexen mit $M(CO)_4$ -Komplexfragmenten (M = V, Nb, Ta)⁶. Der ReFe-Komplex 17 ist in dieser Hinsicht eine Ausnahme: Mit Cyanid wird hier das CpFe-Fragment abgespalten¹⁾. Ein analoger Fall ist vom Thiadiborolen-Komplex µ-L(FeCp)[Mn- $(CO)_{3}$ [L = (EtC)₂(BMe)₂S] bekannt, we mit NaCp ebenfalls das CpFe-Fragment abgespalten wird²⁴⁾. Die von uns gefundene Dismutation unsymmetrischer Tripeldecker-Komplexe ist unverstanden: Warum erfolgt die Bildung der MnCo-Komplexe 13a,b, des ReCo-Komplexes 14 und des ReFe-Komplexes 17 ohne Komplikation, während sich die Dismutation bei der beabsichtigten Synthese der MnFe-Komplexe nicht verhindern läßt? Wir haben mehrfach in Nebenprodukten Hinweise auf derartige Dismutationen erhalten; jedoch konnte noch in keinem Fall ein einmal isolierter, unsymmetrischer Tripeldecker-Komplex nachträglich zum Dismutieren gebracht werden²⁵⁾. Offensichtlich bleibt hier für die Zukunft ein weites Feld mechanistischer Untersuchung.

Diese Arbeit wurde durch die Deutsche Forschungsgemeinschaft und den Fonds der Chemischen Industrie großzügig gefördert.

Experimenteller Teil

Alle Versuche wurden unter Stickstoff als Schutzgas mit absolutierten, Sauerstoff-freien Lösungsmitteln durchgeführt. - Die verwendeten Filterhilfsmittel Seesand (Riedel de Haen, gereinigt) und Kieselgur (Merck) wurden bei 200°C ausgeheizt, i. Vak. abgekühlt und unter Stickstoff aufbewahrt. Aluminiumoxid zur Chromatographie (Woelm, N-Super O) wurde bei 300 °C i. Vak. ausgeheizt und unter Stickstoff mit 7% Sauerstoff-freiem Wasser desaktiviert. – NMR: WP-80 PFT (¹H, 80 MHz, bis – 80 °C), Bruker; JNM-PS 100 (¹¹B, 32.08 MHz), Jeol; WH-270 PFT (¹³C, 67.88 MHz, bis -95°C, in Klammern neben der Multiplizität jeweils J in Hz), Bruker. - MS: Varian MAT CH-5-DF (nominelle Elektronenenergie 70 eV). - IR: Gitterspektrometer 580, Perkin-Elmer. - Cyclovoltammetrische Messungen wurden mit Hilfe eines Programmgebers, Modell 175, und eines Potentiostaten, Modell 173, jeweils von PAR, durchgeführt. Die Cyclovoltammogramme wurden in einer Zelle mit einer Pt-Inlay-Elektrode als Arbeitselektrode, einer Pt-Hilfselektrode und einer gesättigten Kalomel-Elektrode (GKE) als Bezugselektrode und mit THF als Solvens gemessen; die Lösungen waren 10^{-3} M an elektroaktiver Substanz und 0.1 M an NBu_4PF_6 . – Die Tabellen 1–3 enthalten Analysen und spektroskopische Daten.

 $(Na[15]Krone-5)^+[\eta^{5-}(C_4H_4BPh)Co-\mu-\langle\eta^{5-}C_4H_4BPh\rangle)Mo-(CO)_3]^-$ ([NaL] · 4): Zu 340 mg (0.94 mmol) Na · 1b⁷ in 130 ml Et₂O fügt man unter Rühren 340 mg (1.12 mmol) 340 mg Mo-(CO)₃(NCMe)₃^{10,11}). Die Reaktionsmischung wird sofort rot. Nach 40 min wird durch Seesand filtriert. Zum Filtrat rührt man 0.20 g (0.91 mmol) [15]Krone-5 in 7 ml Et₂O. Die Kristallisation wird durch Kratzen an der Glaswand eingeleitet. Nach 1 h dekantiert man die Mutterlauge, wäscht den Feststoff mit wenig Et₂O, trocknet

Tab. 1. Präparative Daten und C,H-Analysen

Komplex ^{a)}	Summenformel Molmasse (MS) ^b Analyse Ber. C H Gef. C H		Farbe Schmp./Zers. [°C]	
[NaL] · 4	C ₃₃ H ₃₈ B ₂ CoMoNaO ₈	50.01 5.03	lila	
	762.1 ^{c)}	51.80 4.98	^{c)}	
[NaL] · 5	C ₃₃ H ₃₈ B ₂ CoNaO ₈ W	46.63 4.51	dunkelrot	
	850.1 ^{c)}	46.41 4.39	113-114/>120	
[NaL] · 7 · THF	C ₃₂ H ₄₂ BFeMoNaO ₉	50.82 5.60	dunkelrot	
	756.3 ^{c)}	50.54 5.48	156/>160	
[NaL] $\cdot 8 \cdot \frac{1}{2}$ THF	C ₃₀ H ₃₈ BFeNaO _{8.5} W	4 4 .59 4.74	dunkelrot	
	808.1 ^{c)}	44.21 4.72	160 – 161 ^{d)}	
10	C ₁₈ H ₁₅ BFeMoO ₃	48.92 3.42	dunkelrot	
	441.9 ^{c)}	48.81 3.51	80/>140	
11	C ₁₈ H ₁₅ BFeO ₃ W	40.81 2.85	violett	
	529.8 (530)	40.72 2.98	93-94/>155	
12	C ₂₅ H ₂₁ BFeO ₃ W	48.44 3.41	rot-violett	
	619.9 ^{c)}	48.80 3.40	138/>160	
14	C ₂₃ H ₁₈ B ₂ CoO ₃ Re	45.35 2.98	dunkelrot	
	609.1 (610)	45.30 3.04	131/ ^{e)}	
15a	$C_{11}H_7B_2Mn_2O_6$	37.13 1.98	orangerot	
	355.9 (356)	37.21 2.04	130-132/>200	
16a	C ₁₅ H ₁₇ BFe ₂	56.34 5.36	dunkelgrün	
	319.8 (320)	56.22 5.21	184/— ^{e)}	
16b	C ₂₀ H ₁₉ BFe ₂	62.91 5.02	dunkelgrün	
	381.9 (382)	62.93 5.10	162 164/ ^{d)}	

^{a)} L = [15]Krone-5. - ^{b)} Massenzahl der häufigsten Isotopenkombination des Molekülpeaks; für Fragmentierungsmuster siehe Lit.²⁾ - ^{o)} Nicht bestimmt. - ^{d)} Schmilzt unter Zersetzung. - ^{e)} Keine Zers. bis 250°C.

Tab. 2. ¹H- und ¹¹B-NMR-Spektren

Komplex ^a)	l _{H-NMR} b) Borol-Ring ^{d)}				Solvens	δ(¹¹ B) ^c)
				sonstige Gruppen		
	2-/5-H	3-/4-Н	N			
[NaL]•4	3.45	4.80	4.8	7.67m (2 H _O), 7.48m (2 H _O),	[D ₆]Aceton	12 br ^{e)}
	3.84	5.14	5.8	7.20m (4 H_m , 2 H_p), 3.71s (20H, L)		E)
[NaL]•5	3.44	4.73	4.8	7.70m (2 H _O), 7.46m (2 H _O),	[D ₆]Aceton	12 br^{I}
	3.93	5.26	5.8	7.18m (4 H_m , 2 H_p), 3.71s (20H, L)		
[NaL]•7•THF	2.87	4.41	4.4	7.69m (2 H _O), 7.14m (2 H _m , H _p), 3.95s (Cp), 3.71s (20H, L) ^{g)}	[D ₆]Aceton	9.0
[NaL]•8•支THF	2.88	4.39	4.2	7.67m (2 H _O), 7.12m (2 H _m , H _p), 4.03s (Cp), 3.72s (20H, L) ^{g)}	[D ₆]Aceton	7 .7
9	3.51	5.09	_h)	7.83m (2 H _O), 7.33m (2 H _m , H _p), 4.14s (Cp), -5.30s (CrH)	[D ₆]Aceton	_g)
10	3.74	5.17	4.2	7.77m (2 H_0), 7.31m (2 H_m , H_p), 4.20s (Cp), -5.46s (MoH)	[D ₆]Aceton	10.4
11	3.85	5.25	3.9	7.78m (2 H_0), 7.33m (2 H_m , H_p), 4.33s (Cp), -6.51s (WH) ¹)	[D ₆]Aceton	14.7
12	3.87	5.22	4.2	7.71m (2 H_0), 7.34m (2 H_m , H_p), Benzyl: 7.01m (Ph), 2.96s (CH ₂) ^{j)} , 4.30s (Cp)	[D ₆]Aceton	14.7
14	3.63	4.98	4.7	7.22-7.91m (2 Ph)	CDC13	13.9
	4.28	5.57	5.6		5	25.8
1 5a	2.51	5.19	4.7	0.77s (Me)	CD ₂ Cl ₂	19.0
16a	2.27	4.05	3.1	3.68s (2 Cp), 1.09s (Me)	CD ₂ Cl ₂	6.7
16b	2.68	4.24	3.6	3.69 s (2 Cp), 7.96m (2H _O), 7.35m (2 H _m , H _p)	CD ₂ Cl ₂	6.0

^{a)} L = [15]Krone-5. - ^{b)} & Werte, gegen int. TMS. - ^{c)} Gegen ext. BF₃ · OEt₂. - ^{d)} Zwei Multipletts eines AA'BB'-Systems mit $N = {}^{3}J_{23} + {}^{4}J_{24}$ [Hz]; vgl. Lit.⁷⁾ - ^{e)} Halbwertsbreite 335 Hz (10.4 ppm). - ^{f)} Halbwertsbreite 440 Hz (13.7 ppm). - ^{g)} Ferner Signale von freiem THF. - ^{b)} Nicht gemessen. - ⁱ⁾ ${}^{1}J_{WH} = 34.4$ Hz. - ⁱ⁾ ${}^{2}J_{WH} = 5.7$ Hz.

i. Vak. und erhält so 450 mg (63%) [NaL] \cdot 4 als lilafarbenes Kristallisat; luftempfindlich, wenig löslich in Et₂O, gut löslich in CH₂Cl₂.

 $(Na[15]Krone-5)^+[\eta^5-(C_4H_4BPh)Co-\mu-\langle \eta^5-(C_4H_4BPh)\rangle$ $W(CO)_3]^-$ ([NaL] · 5): Zu 770 mg (2.13 mmol) Na · 1b⁷) in 300 ml Et₂O fügt man unter Rühren 1.18 g (3.02 mmol) W(CO)₃-(NCMe)₃^{10,11}. Die sich rot färbende Reaktionsmischung wird nach 15 h durch Seesand filtriert. Zum Filtrat rührt man 0.47 g (2.14 mmol) [15]Krone-5 in 16 ml Et₂O und rührt noch 1 h. Abfiltrieren des Niederschlags, Waschen mit wenig Et₂O und Trocknen i. Vak. gibt 1.20 g (66%) [NaL] · 5 als dunkelrote Kristalle; luftempfindlich, wenig löslich in Et₂O, gut löslich in CH₂Cl₂.

 $(Na[15]Krone-5)^+[\eta^5-(C_5H_5)Fe-\mu-\langle \eta^5-(C_4H_4BPh)\rangle Mo-(CO)_3]^- cdot THF ([NaL] cdot 7 cdot THF): Na cdot 2b, dargestellt aus 350 mg (1.34 mmol) CpFeH(C_4H_4BPh)^{8)} und NaH in 110 ml THF, wird mit 600 mg (1.98 mmol) Mo(CO)_3(NCMe)_3^{10,11} 2 h bei Raumtemp. gerührt. Man filtriert durch eine 3-cm-Schicht von Kieselgur, engt das Filtrat auf 50 ml ein und fügt 0.9 ml (1.25 mmol) [15]Krone-5, verdünnt in THF, zu. Überschichten mit 40 ml$ *i* $Pr₂O und Kühlen auf <math>-30^{\circ}$ C liefert 0.80 g (79%) [NaL] \cdot 7 cdot THF als dunkelrote

Kristalle; luft- und feuchtigkeitsempfindlich, sehr wenig löslich in Et_2O , löslich in THF und CH_2Cl_2 ; aus der Mutterlauge kann weiteres Produkt gewonnen werden. – Das Filtrat der Reaktionslösung liefert durch einfaches Entfernen alles Flüchtigen i. Vak. Na

Tab. 3. IR-Spektrum: Carbonyl-Banden

Komplex ^{a)}	v(CO) [cm ⁻¹]	Solvens
[NaL] · 4 [NaL] · 5 [NaL] · 7 · THF [NaL] · 8 · ½ THF 9 10 11 12 14 15a	1911, 1802, 1759 1905, 1798, 1755 1908, 1797, 1754 1897, 1787, 1745 2018, 1950, 1936 2028, 1952, 1941 2022, 1942, 1932 2018, 1938, 1925 2035, 1951, 1940 2026, 1968, 1961	CH ₂ Cl ₂ CH ₂ Cl ₂ THF CH ₂ Cl ₂ Pentan Pentan Pentan Hexan Hexan Pentan

^{a)} L = [15]Krone-5.

7 · x THF (Gehalt 77% mit 23% THF; $x \approx 2$) (95%) als rotbraunen, pyrophoren Feststoff. – ¹³C-NMR ([D₆]Aceton, 30°C): δ = 233.6 (S, MoCO), 134.3 (dt, 155/7, 2 Co), 127.2 (dd, 155/6, 2 Cm), 125.6 (dt, 158/7, C_p), 69.5 (t, 143, [15]Krone-5), 69.0 (dquin, 175/ 6.5, Cp), 60.9 (dm, 178, C-3/-4), 55 (d br, ~165, C-2/-5), dazu Signale von THF.

 $(Na[15]Krone-5)^+[\eta^5-(C_5II_5)Fe-\mu-\langle\eta^5-(C_4H_4BPh)\rangle W(CO)_3]^ \frac{1}{2}$ THF ([NaL] \cdot 8 $\cdot \frac{1}{2}$ THF): Na \cdot 2b, dargestellt aus 560 mg (2.14 mmol) CpFeH(C₄H₄BPh)⁸⁾ und NaH in 140 ml THF, werden mit 890 mg (2.27 mmol) W(CO)₃(NCMe)₃^{10,11)} 24 h bei Raumtemp. gerührt. Man filtriert durch eine 3-cm-Schicht von Kieselgur und rührt zum Filtrat 3.8 ml (2.16 mmol) [15]Krone-5, verdünnt in THF. Überschichten mit 70 ml iPr_2O und Kühlen auf -30 °C liefert 1.31 g (76%) [NaL] \cdot 8 \cdot $\frac{1}{2}$ THF als dunkelrote, quaderförmige Kristalle; luft- und feuchtigkeitsempfindlich, sehr wenig löslich in Et₂O, löslich in THF und CH₂Cl₂; aus der Mutterlauge kann weiteres Produkt gewonnen werden. - Das Filtrat der Reaktionslösung liefert durch einfaches Entfernen alles Flüchtigen i. Vak. Na · **8** · x THF (Gehalt 88% mit 12% THF; $x \approx 1$) (94–98%) als rotbraunen, pyrophoren Feststoff. - ¹³C-NMR ([D₆]Aceton, 30°C): $\delta = 225.7$ (s, WCO), 134.5 (dt, 157/7, 2 C_o), 127.3 (dd, 155/7, 2 C_m), 125.9 (dt, 156/7, C_p), 69.6 (t, 143, [15]Krone-5) und (dm, 175, Cp), 58.3 (ddd, 180/11/8, C-3/-4), 53.7 (d br, 171, C-2/-5), dazu Signale von THF.

 $\eta^{5} - (C_{5}H_{5})Fe - \mu - (\eta^{5} - (C_{4}H_{4}BPh) / CrH(CO)_{3}$ (9): Nach Lit.⁹ wird Na · 2b, dargestellt aus 230 mg (0.88 mmol) CpFeH(C₄H₄BPh)⁸⁾ und NaH in 20 ml Dioxan, mit 165 mg (0.88 mmol) Cr(NH₃)₃-(CO)₃²¹⁾ 4 h auf 100°C erhitzt. Entfernen des Solvens i. Vak., Lösen in THF, Filtrieren durch eine 5-cm-Schicht von Kieselgur und Entfernen alles Flüchtigen i. Vak. ergibt rohes Na · 6 (Gehalt 75%, mit 12.6% THF und 12.4% Dioxan). - Rohsalz mit einem Gehalt von 158 mg Na · 6 (0.38 mmol), suspendiert in 60 ml Pentan, wird mit 8 ml 30proz. Phosphorsäure 3 min kräftig geschüttelt. Die rote organische Phase wird sogleich durch wasserfreies MgSO4 in eine auf -78°C gekühlte Vorlage filtriert. Die wäßrige Phase wird noch zweimal mit 20 ml Pentan extrahiert und ist dann moosgrün. Aus der roten Pentanlösung erhält man durch Entfernen des Solvens bei $\leq -50^{\circ}$ C i. Vak. 9 als schwarze Kristalle, die sich bei $> -40^{\circ}$ C rasch zersetzen.

 $\eta^{5} - (C_{5}H_{5})Fe - \mu - [\eta^{5} - (C_{4}H_{4}BPh)]MoH(CO)_{3}$ (10): Rohes Na · 7 mit einem Gehalt von 575 mg (1.24 mmol), suspendiert in 40 ml Pentan, wird mit 2 ml 30proz. Phosphorsäure 3 min kräftig geschüttelt. Die dunkelrote organische Phase wird sogleich durch wasserfreies MgSO4 filtriert. Einengen des Filtrats auf 20 ml und Kühlen auf -30° C liefert 0.39 g (71%) 10 als schwarzrote, würfelige Kristalle, luft- und feuchtigkeitsempfindlich, löslich in Pentan, sehr gut löslich in THF. – ¹³C-NMR(CD₂Cl₂, 30°C): $\delta = 225.4$ (d, $^{2}J_{C,H} = 13$ Hz, MoCO, auch bei -85 °C scharf), 142.0 (s br, bei -80°C, C_i), 132.9 (dt, 156/7, 2 C_o), 127.4 (dd, 157/7, 2 C_m), 127.0 (dt, 159/7, C_p), 69.5 (dm, 178/7, Cp), 63.8 (ddd, 186/11/7, C-3/-4), 63.1 (d br, 176, C-2/-5).

 η^{5} -(C₅H₅)Fe- μ -[η^{5} -(C₄H₄BPh)]WH(CO)₃ (11): Darstellung wie bei 10 aus rohem Na · 8 mit einem Gehalt von 790 mg (1.43 mmol), suspendiert in 120 ml Pentan, und 10 ml 30proz. Phosphorsäure liefert 0.33 g (44%) 11 als violette Plättchen; luft- und feuchtigkeitsempfindlich, löslich in Pentan, sehr gut löslich in THF. - ¹³C-NMR ([D_6]Aceton, 30 °C): $\delta = 218.8$ (s, WCO), 141.1 (s, bei -60° C, C_i), 133.8 (dt, 157/7, 2 C_o), 128.2 (dd, 157/6, 2 C_m), 127.8 (dt, 158/7, C_p), 71.1 (dm, 178/7, Cp), 62.3 (dm, 191, C-3/-4), 61.0 (d br, 181, C-2/-5); CO-Gruppen bei -60 °C: $\delta = 225.7$ (s, CO_{trans}), 215.7 (s. 2 CO_{cis}); Tieftemp.-Reihe: $T_{\rm C} = 223 \pm 5 \,{\rm K}, \Delta G^* = 49 \pm$ 5 kJ mol^{-1} .

 $\eta^{5} - (C_{5}H_{5})Fe - \mu - [\eta^{5} - (C_{4}H_{4}BPh)]W(CO)_{3} - \eta^{\prime} - (CH_{2}Ph)$ (12): Man tropft zu 0.75 g (1.36 mmol) Na \cdot 8 in 50 ml THF bei -78 °C 0.16 ml (1.36 mmol) Benzylbromid in 15 ml THF, läßt die Temp. auf 20°C ansteigen, rührt noch 1 h bei Raumtemp. und entfernt dann alles Flüchtige (zuletzt bei 10⁻⁶ bar). Der Rückstand wird in 40 ml CH₂Cl₂ gelöst; Filtrieren durch Aluminiumoxid, Überschichten mit 40 ml Hexan und Kühlen auf -30 °C liefert 345 mg (41%) 12 als rotviolette Kristalle; aus der Mutterlauge kann weiteres Produkt gewonnen werden.

 η^{5} -(C₄H₄BPh)Co- μ -[η^{5} -(C₄H₄BPh)]Re(CO), (14): Man gibt zu 758 mg (1.84 mmol) NMe₄ · 1b⁷ in 100 ml CH₂Cl₂ 795 mg (1.84 mmol) ReBr(NCMe)₂(CO)₃¹⁸⁾ und rührt 4 h bei Raumtemp. Verdünnen mit 120 ml Hexan, Einengen auf die Hälfte und Abfiltrieren des ausgefallenen NMe₄Br ergibt ein dunkelrotes Filtrat, aus dem durch Einengen und Kühlen auf -30 °C 896 mg (80%) 14 als schwarzrote, luftbeständige Kristalle erhalten werden; schwerlöslich in Hexan, gut löslich in Et₂O und CH₂Cl₂.

 μ -[η^{5} -(1-Methylborol)]-bis(tricarbonylmangan) (15a) und μ -[η^{5} -(1-Methylborol)]-bis[$(\eta^{5}-cyclopentadienyl)$ eisen] (16a): Man tropft eine Lösung von Na · 2a in 10 ml THF, dargestellt aus 120 mg (0.60 mmol) CpFeH(C₄H₄BMe)⁸⁾ und festem NaH, zu 270 mg (0.66 mmol) [Mn(CO)₃(NCMe)₃]PF₆¹⁷⁾ in 10 ml THF. Das Reaktionsgemisch wird in Sekunden tiefgrün. Nach 15 min wird das Solvens i. Vak. entfernt und der Rückstand mit Pentan an Al₂O₃ (7% Wasser, Säule 65 \times 2 cm, -25 °C) chromatographiert.

a) 16a Die erste Zone ist grün. Einengen und Kristallisieren bei -30° C gibt 21 mg (11%) 16a als dunkelgrüne Kristalle; mäßig luftempfindlich.

b) 15a: Die zweite Zone ist orangegelb. Einengen und Kristallisieren bei -30°C gibt 41 mg (20%) 15a als orangerote Kristalle; lichtempfindlich.

 μ - $[\eta^{5}-(1-Phenylborol)]-bis[(\eta^{5}-cyclopentadienyl)eisen]$ (16b): Darstellung wie bei 16a aus 100 mg (0.38 mmol) CpFe- $H(C_4H_4BPh)^{(8)}$ und 180 mg (0.44 mmol) [Mn(CO)₃(NCMe)₃]PF₆¹⁷⁾. Das Reaktionsgemisch wird nach 30 min vom Solvens befreit und der Rückstand mit Hexan extrahiert. Kristallisation aus 20 ml Hexan bei - 30°C ergibt 45 mg (32%) 16b als dunkelgrüne Nadeln; luftempfindlich, wird auf der Chromatographiersäule zersetzt. Durch Chromatographie der Mutterlauge kann man auch 15b²⁰⁾ (16 mg, 11%) gewinnen.

CAS-Registry-Nummern

Na · 1b: 111800-81-8 / NMe₄ · 1b: 111800-84-1 / Na · 2a: 133870-133869-95-1 / 12: 133869-96-2 / 14: 133869-97-3 / 15a: 133869-98-4 / 16a: 133869-99-5 / 16b: 133870-02-7 / Mo(CO)₃(NCMe)₃: 15038-48-9 / W(CO)₃(NCMe)₃: 16800-47-8 / Cr(NH₃)₃(CO)₃: 14974-11-9 / ReBr(NCMe)₂(CO)₃: 28862-30-8 / [Mn(CO)₃(NCMe)₃]PF₆: 54039-60-0

¹⁾ G. E. Herberich, B. J. Dunne, B. Heßner, Angew. Chem. 101

 ^{(1989) 798;} Angew. Chem. Int. Ed. Engl. 28 (1989) 737.
 ^{2) 2a)} K. M. Peters, Diplomarbeit, Technische Hochschule Aachen, 1986. - ^{2b)} K. M. Peters, Dissertation, Technische Hochschule Aachen, 1989. - ^{2c)} D. P. J. Köffer, Dissertation, Technische Hochschule Aachen, 1986.

³⁾ Mit Cp-Brückenliganden: H. Werner, Angew. Chem. **89** (1977) 1; Angew. Chem. Int. Ed. Engl. **16** (1977) 1; A. R. Kudinov, M. I. Rybinskaya, Yu. T. Struchkov, A. I. Yanovskii, P. V. Petrovs-kii, J. Organomet. Chem. 336 (1987) 187. – Mit Benzol-Brük-kenliganden: A. W. Duff, K. Jonas, J. Am. Chem. Soc. 105 (1983) 5479; W. M. Lamanna, W. B. Gleason, D. Britton, Organometallics 6 (1987) 1583.

- ⁴⁾ Mit B- und C-Atomen im Brückenliganden: ^{4a)} R. N. Grimes, Coord. Chem. Rev. **28** (1979) 47. ^{4b)} W. Siebert, Angew. Chem. **97** (1985) 924; Angew. Chem. Int. Ed. Engl. **24** (1985) 943. ^{4c)} G. E. Herberich, Boron Ring Systems as Ligands to Metals in Comprehensive Organometallic Chemistry (G. Wilkinson, F. G. A. Stone und E. W. Abel, Hrsg.), Bd. 1, S. 381, Pergamon Press, Oxford 1982. – ⁴⁴⁾ K. J. Chase, R. N. Grimes, Organometallics 8 (1989) 2492, und dort zitierte Literatur; J. H. Davis, Jr., E. Sinn, R. N. Grimes J. Am. Chem. Soc. 111 (1989) 4776, und dort zitierte Literatur. – ^{4e)} G. E. Herberich, B. Hessner, M. Hostalek, J. Organomet. Chem. 355 (1988) 473. – ⁴⁰ K. F. Wörner, J. K. Uhm, H. Pritzkow, W. Siebert, Chem. Ber. 123 (1990) 1239.
- ⁵⁾ Mit P- und As-Atomen im Brückenliganden: M. Di Vaira, L. Sacconi, Angew. Chem. 94 (1982) 338; Angew. Chem. Int. Ed. Engl. 21 (1982) 330; O. J. Scherer, ibid. 102 (1990) 1137; 29 (1990) 1104; O. J. Scherer, Comments Inorg. Chem. 6 (1987) 1; W. Tremel, R. Hoffmann, M. Kertesz, J. Am. Chem. Soc. 111 (1989) 2030
- ⁶⁾ Komplexe mit $M(CO)_4$ -Fragmenten (M = V, Nb, Ta): G. E. Herberich, I. Hausmann, N. Klaff, Angew. Chem. 101 (1989) 328; Angew. Chem. Int. Ed. Engl. 28 (1989) 319.
- ⁷⁾ G. E. Herberich, B. Hessner, R. Saive, J. Organomet. Chem. 319 (1987) 9.
- ⁸⁾ G. E. Herberich, B. Hcßner, D. P. J. Köffer, J. Organomet. Chem. 362 (1989) 243.
- ⁹⁾ G. E. Herberich, B. Heßner, J. A. K. Howard, D. P. J. Köffer, R. Saive, Angew. Chem. 98 (1986) 177; Angew. Chem. Int. Ed. *Engl.* **25** (1986) 165. ¹⁰ D. P. Tate, W. R. Knipple, J. M. Augl, *Inorg. Chem.* **1** (1962)
- 433.

- ¹¹⁾ B. L. Roos, J. G. Grasselli, W. M. Ritchey, H. D. Kaesz, Inorg. Chem. 2 (1963) 1023. C. J. Pedersen, H. K. Frensdorff, Angew. Chem. 84 (1972) 16;
- 12) Angew. Chem. Int. Ed. Engl. 11 (1972) 16.
- ¹³⁾ M. Y. Darensbourg, *Progr. Inorg. Chem.* **33** (1985) 221. ¹⁴⁾ T. Madach, H. Vahrenkamp, *Z. Naturforsch. Teil B*, **34** (1979) 573; 33 (1978) 1301.
- ¹⁵⁾ A. Davison, J. A. McCleverty, G. Wilkinson, J. Chem. Soc. 1963, 1133.
- ¹⁶ J. W. Faller, A. S. Anderson, C.-C. Chen, Chem. Commun. 1969, 719
- ¹⁷⁾ R. H. Reimann, E. Singleton, J. Organomet. Chem. 59 (1973) C24.
- ¹⁸⁾ M. F. Farona, K. F. Kraus, *Inorg. Chem.* 9 (1970) 1700.
 ¹⁹⁾ G. E. Herberich, J. Hengesbach, G. Huttner, A. Frank, U. Schubert, J. Organomet. Chem. 246 (1983) 141. G. E. Herberich, W. Boveleth, B. Hessner, D. P. J. Köffer, M. 20)
- Negele, R. Saive, J. Organomet. Chem. 308 (1986) 153.
- ²¹⁾ G. A. Razuvaev, A. N. Artemov, A. A. Aladjin, W. J. Sirotkin, J. Organomet. Chem. 111 (1976) 131.
 ²²⁾ G. E. Heberich, M. Negele, H. Ohst, Chem. Ber. 124 (1991) 25, und frühars Arbeiten der gleichen Paihe inchesondere Lit^{7,8,20}
- und frühere Arbeiten der gleichen Reihe, insbesondere Lit.
- ²³⁾ A. Salzer, H. Werner, Angew. Chem. 84 (1972) 949; Angew. Chem. Int. Ed. Engl. 11 (1972) 930; A. Salzer, H. Werner, Synth. Inorg. Met.-Org. Chem. 2 (1972) 249; E. Dubler, M. Textor, H. R. Os-
- wald, G. B. Jameson, Acta Crystallogr., Sect. B, **39** (1983) 607. ²⁴⁾ W. Siebert, W. Rothermel, C. Böhle, C. Krüger und D. J. Brauer, Angew. Chem. 91 (1979) 1014; Angew. Chem. Int. Ed. Engl. 18 (1979) 949.
- ²⁵⁾ N. Klaff, Dissertation, Technische Hochschule Aachen, 1989.

[104/91]